

Climate Damages Workshop

Karen Carney, PhD Stratus Consulting Washington, DC January 28, 2011

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs

Background

- Why do ecosystems matter when assessing economic impacts of climate change?
- Provide critical services to people
 - Provisioning (e.g., food, water, raw materials)
 - Regulating (e.g., air quality, storm protection, waste assimilation)
 - Cultural (e.g., recreation, passive use)
- These services have substantial economic value

Background (cont.)

- Climate change affects:
 - What species are where
 - How productive an ecosystem is
 - Rates of ecosystem processes (e.g., decomposition, denitrification)
 - The disturbance regimes it experiences
 - Drought
 - Fire
 - Pest outbreaks

Background (cont.)

- Which ecological impacts?
- Given focus on use in integrated assessment models, focus on impacts:
 - Ecologically important
 - Impact is large and relatively widespread
 - Economically important
 - Impact will affect ecosystem services with high values
 - Well understood
 - Need to quantify projected impacts in scientifically robust way

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs

Key Ecosystem Impacts

- For each impact, will discuss:
 - Why the impact is likely to occur
 - The tools available to estimate the impact
 - What research has shown
 - Key uncertainties or other shortcomings with projecting future impacts
 - What key services are likely to be affected

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs

Changes in Vegetation

- How will climate affect vegetation?
 - Changes in temperature, precipitation, relative humidity affect:
 - What species can live where
 - Ecosystem productivity
 - Wildfire frequency and intensity, a key disturbance agent
 - Will fundamentally alter our environment where grasslands and forests are, and what kinds of animals we see in different areas (not static)

- Projecting future vegetation dynamics
 - Dynamic global vegetation models (DGVMs)
 - Large scale patterns of vegetation change
 - Typically have interacting modules:
 - Biogeography model potential vegetation given climate and soil parameters
 - Biogeochemistry model, which simulates the movement of nutrients
 - -Fire model disturbance by wildfire

- Projecting future vegetation dynamics (cont.)
 - For specified time period and climate scenario, DGVMs can tell you:
 - Potential vegetation type (e.g., temperate deciduous forest, temperate mixed forest)
 - Plant biomass (by life form trees, shrubs, grasses)
 - Carbon storage (above and belowground)
 - Burned area/wildfire frequency

- Projecting future vegetation dynamics (cont.)
 - Many DGVMs are available; commonly used:
 - MC1 United States
 - Lund-Potsdam-Jena (LPJ) –
 Germany/Sweden
 - SDGVM United Kingdom
 - Integrated Biosphere Simulator (IBIS) United States

What research has shown

From: Lenihan et al., 2008. Global and Planetary Change 64:16–25.

- What research has shown (cont.)
 - % change in tree coverage, SRES
 A1FI, 4 DGVMs, Hadley GCM
 - Significant variability across models
 - Some areas of general agreement
 - Varying degrees of Amazon forest dieback
 - Boreal forest expansion

From: Sitch et al., 2008. *Global Change Biology* 14:2015–2039.

- Key uncertainties
 - Potential vegetation only most anthropogenic factors ignored; some can be addressed
 - Fires suppression can be accounted for
 - Can screen out urban/agricultural lands
 - Assume no barriers to plant dispersal
 - Pests and pathogens are ignored
 - Significant differences across DGVMs for the same region and climate scenario

- Affected ecosystem services
 - Forestry
 - Timber
 - Non-timber forest products
 - Grazing
 - Forage productivity in grasslands, shrublands, savannas, and forests
 - Carbon sequestration and storage

Take home

- Ecosystems across the globe will be affected, so this is a key impact to consider
- Can examine multiple scales countries, regions, the globe
- Linked to critical ecosystem services
- Good models, but difficult to know which ones are most reliable
- Highly dependent on the GCM used
- Look for areas of agreement, perhaps average DGVM results when possible

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire dynamics
 - Species extinction risks
- Future research needs

Wildfire Dynamics

- How will climate affect wildfire?
 - Fires will likely increase in many areas via various mechanisms

Photo credit: USFWS

- Direct
 - —Higher temperatures = more fires
 - Higher temperatures (and decreased precipitation) = desiccation of vegetation and forest floor (fuel)
- Indirect
 - Changes in vegetation type (grassland/forest)
 - -Changes in productivity (fuel load)

Wildfire Dynamics (cont.)

- Projecting future wildfire dynamics
 - Statistical models
 - Examine past fire behavior
 - Identify factors (e.g., via stepwise linear regression) that are key to predicting fire
 - Use equation to predict fires in future (based on key variables)
 - DGVMs

Wildfire dynamics (cont.)

- What research has shown
 - Change wildfire freq. from 2000-2100, A1B
 - More fire: U.S., central South America, southern Africa, western China, Australia
 - Less fire: northern Canada, northern Russia

From: Gonzales et al. 2010. Global Ecol. Biogeogr. 19: 755-768

Wildfire Dynamics (cont.)

- Key uncertainties
 - For both statistical model and DGVM approaches
 - Methods only roughly approximate historical fires
 - Thus, provide similarly rough estimates of future wildfire dynamics
 - Timing/locations of specific fires cannot be predicted

Wildfire Dynamics (cont.)

Affected ecosystem services

- Timber/non-timber forest product provisioning
- Recreation
- Fire suppression (not an ecosystem service but a real cost)
- Regulation of air quality aerosols (see Spracklen et al., 2009, Journal of Geophysical Research)

Photo credit: USFWS

Photo credit: USFWS

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire frequency/intensity
 - Species extinction risks
- Future research needs

Species Extinctions

How will climate affect it?

- Climate (temperature/precipitation) is a key driver of species and ecosystem distributions
- As climate shifts, areas that support specific species may move (sometimes into areas inhabited by humans)
- Habitat may disappear (e.g., alpine, cloud-forest dependent species)
- These dynamics will likely increase the risk of species extinctions

- Projecting future species extinctions
 - Most commonly involves application of "climate envelope" models
 - Use current distributions of a species to construct its climatic requirements
 - Under future climate change, then determine where species could live
 - Use species-area relationships to project extinctions

- What research has shown
 - Results vary
 - 9–52% of species will be "committed" to extinction by 2050 (Thomas et al., 2004)
 - 20–30% of plant and animal species at risk of extinction with increase of 2–3 C (IPCC, 2007)
 - 0–60% extinctions for different taxa/methodologies (Pereira et al., 2010)
 - Envelope model did no better than "null" models in predicting species occurrence (null = species ranges are randomly placed in region; Beal et al., 2010)

- Key uncertainties
 - Great deal of uncertainty within and across studies and modeling methods
 - Climate envelope models
 - May overestimate extinctions
 - Species may be flexible climatically
 - Biotic interactions may be more important than climate
 - May underestimate extinctions
 - Dispersal may be limited by habitat fragmentation
 - Impacts of climate change may be amplified by land use change

- Affected ecosystem services
 - Another key issue...
 - How do you value global biodiversity?
 - Could query public
 - Some species may matter more to the public, and ecologically, than others

- Affected ecosystem services (cont.)
 - Values could be tied to specific species, or suites of species
 - A given tree may provide highly valued wood
 - Bird watching/wildlife viewing is valuable
 - But values not tied to global extinction risk linked to species, suites of species, and/or specific locations

Take home

- Climate change is a threat to species, and more extinctions are likely to occur
- Range of estimates available for species extinction risk
- Robustness of estimates highly contested
- Link to ecosystem services and values difficult
- Proceed with caution

Outline

- Background
- Descriptions of key ecosystem impacts
 - Vegetation distribution and dynamics
 - Wildfire frequency/intensity
 - Species extinction risks
- Future research needs

Photo credit: USFWS

- Integrating across approaches
 - Across all impacts, variety of methods available that provide different estimates of impact
 - Need to think carefully about how to integrate across studies/tools
 - Meta-analyses?
 - 'Ensemble means' of ecosystem impacts with different models?
 - Need to be done with different climate scenarios/GCMs
 - How can this be done practically?

Future research (cont.)

Major Gaps

- Need to develop large-scale, long term projections for changes in
 - Pest outbreaks
 - Interior wetland change/loss

- Large-scale impacts on freshwater/marine ecosystems
- Implications for recreational values

Photo credit: USFWS

Photo credit: USFWS

Photo credit: USFWS

Wildfire Dynamics (cont.)

- What research has shown
 - Fire risk for three different time periods over 21st century
 - Higher fire risk:
 - U.S.
 - Amazon
 - Western China
 - Lower fire risk:
 - Northern Canada
 - Russia
 - Australia (?)

From: Krawchuck et al., 2009. Plos One 4: e5102.